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A new recursive method for creating a general class of many-body diagrams (e.g., ground- 
state energy, open-shell, Bloch-Brandow, one- and two-particle Green-function, cluster 
operator) in Hugenholtz and Goldstone representation is described. The algorithm generates 
all linked and topologically distinct graphs up to arbitrary order of MBPT. Both one- and 
two-particle vertices can be taken into account. The procedure can be very effectively 
programmed for computer realization. The previous methods are discussed, results for non- 
Hartree-Fock vacuum diagrams are shown, and a procedure for the automatic evaluation of 
MBPT corrections using the Goldstone form of these graphs is presented. b 1988 Academic 

Press, Inc 

1. INTRODUCTION 

Recently, a growing interest has been devoted to the investigation of electron 
correlation effects in small and middle-sized molecular systems using so-called “size- 
consistent” methods. “Size-consistence” means the proper physical behaviour of the 
calculated correlation energy when the number of particles (N) goes to infinity, and 
there exist numerous review articles Cl-33 describing the generally used size- 
consistent “full configuration interaction” (full CI), “many-body perturbation 
theory” (MBPT) and “coupled-cluster theory” (CCT) methods. Unfortunately, for 
the full CI procedure the calculational efforts are increasing exponentially with the 
number of particles, while the complexity of MBPT and CCT is of polynomial 
order N on any given approximation level. It turned out [4] that CCT gives out- 
standing results even for low order approximation, but the exact treatment of the 
important four-particle (T4 cluster) correlation effects, which arise only in higher 
orders of MBPT is completely out of the question in CCT, because of the inherent 
technical difficulties of the coupled-cluster method. However, Paldus and his group 
have recently published [4] an approximate method (ACPQ) for taking into 
account given types of diagrams of T4 cluster corrections. The most promising 
procedure for treating moderately extended systems and at the same time for 
including higher order effects is MBPT. For detailed description of these theories 
we refer to the literature [2]. 
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In the preceding years very compact formulae were elaborated up to the fourth 
order in the perturbation theory using Wigner’s (2n + 1) rule [S], but in the fifth 
order, where the T4 corrections first appear, these expressions are not yet known. In 
this case the diagrammatic version of the MBPT can be used. Knowing the so- 
called Hugenholtz and Goldstone diagrams the algebraic form of the perturbation 
corrections can be easily constructed, since the combinatorial complexity of the 
problem is already solved by generating these graphs. On the other hand, the 
difficulties in drawing appropriate diagrams are growing extremely with the order 
of the perturbation theory and beyond the third order automatic generation is 
necessary. 

The aim of this paper is to present an effective solution for this task, which can 
also be easily generalized for any kind of many-body diagrams. There already exist 
some algorithms to solve the problem of automatic diagram generation which will 
be discussed in Section 2. Section 3 defines the basic ideas and terminology used 
throughout this paper. In Section 4 we describe a much more effective algorithm 
than the existing ones, and in Section 5 a computer realization of our method is 
presented. The recognition of topologically equivalent diagrams is discussed in 
Section 6, and the automatic evaluation of MBPT corrections using our symbolic 
diagram representations is outlined in Section 7. Computational results for the 
so-called canonical and localized Hartree-Fock diagrams are shown in Section 8. 
Applications of our method for studying pair-energies, T4 cluster corrections up to 
the fifth order [lo], and the other electron correlation calculations using canonical 
and localized molecular orbitals [ 1 l] are described elsewhere. 

2. PREVIOUS METHODS FOR DIAGRAM GENERATION 

Paldus and Wong [6] elaborated the earliest method for generating all 
topologically distinct vacuum, one- and two-particle Green-function diagrams of a 
given order of MBPT. First they construct all topologically distinct Hugenholtz 
diagrams, but any one of them is regularly generated many times, since a con- 
siderable redundancy is yielded by their chosen mathematical description of a 
graph. Since they represent a diagram with a string of integers by passing through 
the vertices, there is no one-to-one correspondence between the strings and the 
diagrams. Using adjacency matrices for eliminating this redundancy is very 
laborious and this complication can be avoided by choosing an unambigous 
representation. 

MBPT has been investigated from the point of view of group theory and com- 
binatorial aspects [S, 91 and some effective methods for evaluating the number of 
Green and Goldstone graphs to estimate their contributions in any order of pertur- 
bation theory were developed [8, 123. A classification of many-body diagrams is 
described [S, 91, and an appropriate representation for computer generation is also 
presented [S], but these results were not used for automatic evaluation of a graph 
contribution, so the efficiency of this method cannot be estimated. 
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Kaldor [7] elaborated another method for computer generating Goldstone and 
Bloch-Brandow diagrams; these latter ones are used in the degenerate MBPT. In 
the first step the so-called exchange sets, in fact the Hugenholtz graphs, are 
constructed and after contracting the Hermitian conjugated sets, the Goldstone 
diagrams are generated. Each Goldstone graph is determined by its loop structure. 
In this method the particle and hole lines are treated separately and an nth order 
exchange set in the case of two-particle vertices is represented with a string of 4n 
integers, which is twice as much as needed for an unambigous mathematical 
description. Since the generation rules for these integer strings are much less strict 
than that of the Hugenholtz diagrams, numerous strings are generated which do 
not correspond to valid graphs. A tedious validity test is necessary for eliminating 
the non-valid representations. 

In Section 4 we show how these difficulties mentioned here can be avoided by 
choosing an appropriate representation which makes a one-to-one correspondence 
between integer strings and many-body diagrams. However, our method can be 
used effectively in the general case when all the diagrams up to a given order of 
MBPT are necessary, but if one wishes to generate a given type of graphs in a given 
order one would be better off with the existing programs [6] which enable a direct 
construction of such diagrams. 

3. BASIC CONCEPTS OF HUGENHOLTZ AND GOLDSTONE GRAPHS 

MBPT is based on the assumption that the total Hamiltonian H of the many- 
electron system can be split into two parts 

H=H,+H,, (1) 

where the eigenvalue problem of H, is solved and H, can be considered as a pertur- 
bation. The second quantized forms of these operators are as follows 

H, = c E;C;C; (2) 

H, =c (i/j) crci+i ,c (ijlkl) cfcTclck (3) 
1. I r.t,k.l 

where cf and ci are the creation and annihilation operators, respectively. The 
expression of H, contains the matrix elements of the one- and two-particle 
interactions above a complete orthonormal basis set of the one-particle functions 
(pi. Every expectation value can be determined by the Wick-algebra of the creation 
and annihilation operators and all members arising in the perturbation series 
correspond to a given graph. The rules of this correspondence are extensively 
discussed in the literature [Z] and we shall repeat now only the most important 
results from our point of view. Two possible graphical representations will be 
described here, the Goldstone and the Hugenholtz diagrams. 
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A Goldstone diagram is constructed of vertices and directed fermion lines. In 
Fig. 1 the correspondence between the one- and two-particle Goldstone vertices and 
the interaction matrix elements can be seen. The two-particle vertex, denoted by 
two points joined with a dashed line, has one entering and one leaving directed 
fermion lines on both ends. The one-particle vertex, visualized by a crossed circle, 
has only one incoming and one outgoing fermion line. 

A Goldstone diagram consists of ordered one- and two-particle vertices 
meanwhile some of their fermion lines may be joined and the rest remain free. The 
increasing order of the vertices, from right to the left, is called the “time-ordering” 
in the physical language and it determines the type (particle or hole) of the directed 
lines. Although it is important in the evaluation of the diagram contributions, on 
the generation and representation level these two types of the fermion lines can be 
treated equivalently, contrary to the method in Ref. [7]. A loop in a Goldstone 
diagram is a closed path created from directed lines. In this context the loop 
definition is different from that of in the graph theory. The knowledge of the loop 
structure is perhaps the most powerful tool for recognizing the equivalent 
Goldstone diagrams [S] arising in all generation procedures. In Section 5 we give a 
detailed description of its realization. Examples for simple loop structures can be 
seen in Fig. 2. 

Due to the symmetry of the two-particle interaction any rotation of the two-par- 
ticle vertices about a horizontal axis gives an equivalent diagram. From the point of 
view of the generation procedure and the automatic evaluation algorithm we also 
define the exchange set [7] of those Goldstone diagrams which can be obtained 
from each other by any exchange of the outgoing lines on given vertecies. An 
exchange set is represented by a Hugenholtz graph, which can be obtained from a 
Goldstone diagram by contracting the ends of the interaction lines to points. In the 
resulting graph there appear the so-called two-particle Hugenholtz vertices having 
two incoming and two outgoing fermion lines. Calculating with localized 
Hartree-Fock orbitals, as it is increasingly used in quantum chemical applications, 
a one-particle Hugenholtz vertex can be identified with a two-particle one having a 

A <=> <i/j> i i 

FIG. 1. The correspondence between the one- and two-particle Goldstone vertices and the interac- 
tion matrix elements. 
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FK;. 2. An example for a third-order Hugenholtz graph with one bubble and the related “exchange 
set” of Goldstone diagrams. 

“bubble.” A bubble is a closed directed line on a two-particle vertex and we note 
that this construction is ordinarily called a loop in graph theory. In the following 
we use the term of bubble and reserve the loop definition given previously. Graphs 
with bubbles play an important role in the investigations of electron correlation 
problems [ 11, 133. Two directed lines with common starting and ending vertices 
are considered equivalent. Figure 2 shows an example for an equivalent line pair 
and a bubble. The existence of equivalent line pairs in a Hugenholtz graph reduces 
the number of distinct Goldstone diagrams belonging to the given exchange set 
[Z]. Connectivity can be defined as usual in the graph theory: a given gaph is 
connected if for any arbitrary two vertices there exists a path in the graph joining 
them. The ground state energy (so-called vacuum) diagrams have no free fermion 
lines. A graph is called linked if it does not contain a disconnected vacuum part. 
Due to this definition all linked ground-state energy diagrams are at the same time 
connected, too. As a consequence of the “linked-cluster” theorem [2, 31 we may 
deal only with the linked Hugenholtz graphs. 

There are two important concepts which are generally used for classifying the 
graph contributions. Two Hugenholtz graphs are “Hermitian conjugated” if they 
can be obtained from each other by a reflection on a vertical axis keeping the 
original directions of the fermion lines. Using real one-particle orbitals the 
Hermitian conjugated graph pairs give the same contribution. On the other hand, a 
so-called “essential distinct” graph [6] represents a group of Hugeenholtz 
diagrams. Any two elements of this group can be obtained from each other by a 
given permutation of their vertices. It can be shown [lo], that knowing the 
structure of every Hugenholtz diagram the CCT corrections can be uniquely 
separated in the perturbation expansion. On the other hand, using “essential 
distinct graphs” only, there is no one-to-one correspondence between these types of 
diagrams and CCT corrections. In order to make this separation possible we shall 
construct every Hugenholtz diagram. 

4. REPRESENTATION INDEPENDENT GENERATION OF HUGENHOLTZ 
AND GOLDSTONE DIAGRAMS 

In this section we shall describe a diagram generation algorithm which can, 
contrary to other existing methods [6, 73, be formulated on a completely abstract, 
graph theoretical level, without referring to any particular machine representation. 
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The method is applicable for generating all kinds (ground-state, open-shell, 
Bloch-Brandow, one- and two-particle Green-function, cluster operator) of linked 
many-body diagrams, which contain one- and two-particle electron interaction 
vertices. We follow the usual way, i.e., first generate all the Hugenholtz graphs in a 
given order, then the corresponding Goldstone diagrams by exchanging the fermion 
lines on the vertices. 

A general nth order Hugenholtz diagram is a directed graph containing n 
electron interaction vertices labelled from 1 to n, as it was described in the previous 
section, and it is eventually completed by two virtual vertices labelled by 0 and cc if 
it is other than a ground-state diagram that we are talking about. The virtual 
vertices originally introduced by Paldus and Wong for Green-function diagrams 
[6] have different properties for each type of graphs, as it is shown in Table I. 

TABLE I 

Correspondence between Hugenholtz Diagram Types and Virtual Vertices 

Object Vertex a, Vertex 0 Graph 

Ground-state 
energy 

- 

One-particle 
Green-function 

-hole 

-particle 

Two-particle 
Green-function 

-hole-hole 

-particle- 
particle 

-particle- 
hole 

Tk Cluster 
operator 

1 leaving 
line 

1 entering 
line 

1 entering 
line 

1 leaving 
line 

2 leaving 
lines 

2 entering 
lines 

2 entering 
lines 

2 leaving 
lines 

1 entering 
and 

1 leaving 
lines 

!f entering 
and 

k leaving 
lines 

1 entering 
and 

1 leaving 
lines 

- 
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Introducing virtual vertices has two definite advantages: on one hand each 
diagram containing free lines becomes a graph in the mathematical sense and each 
linked diagram become connected on the other hand. 

A directed graph is defined by the set of its points and a set of arcs (directed 
lines) [ 141. A directed line is an ordered pair of vertices (u, u), where the line enters 
the point u and leaves the point u, respectively. The most general nth order 
Hugenholtz graph contains the set of points V= (0, I,..., n, 00 } and a set of lines 
L= ((u, v)l u, UE V>, where each integer from 1 to n appears twice both in the first 
and second positions of (u. u), respectively. How many times the symbols 0 and 03 
appear in the ordered pairs depends on the number of entering and leaving lines of 
the virtual vertices. Let us now define two operations for an nth order Hugenholtz 
graph h= (V, L}: 

(if The operation 0 means the addition of the disconnected first-order two- 
electron vertex f as the point (n + 1) to h, as it is indicated in Fig. 3. Symbolically 

where 
@V={O, l)...) n,n+l,co) 

and 

(ii) The operation c(i, j) is defined for each pair of directed lines i, j E L. 
Graphically it cuts the lines i and j, and joins the free end of the outgoing broken 
line originated from i to the free end of the incoming broken line originated from j, 
and vice versa (see Fig. 4). In the mathematical description 

where 

c(i,j) h = { V, c(i,j) L}, 

c(i,j)L=c(i,j){ . ..i=(u.u)...j=(x,y)...} 

= { . . . (24, y) . . . (x, u) . . . ). 

in+ll W,n,....l,O 

f 

FIG. 3. The graphical representation of the operation 0 on an nth order Hugenholtz graph h. 
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FIG. 4. The graphical representation of the operation c(i,j) on an nth order Hugenholtz graph h 
yielding the graph h’. 

We would like to mention here, that from the algorithmic point of view the c(i,i) 
operation can be easily implemented by exchanging the second elements of the 
ordered pairs i and j. Clearly, both operations defined now do not change the 
number of incoming and outgoing lines of any vertices and so they result in valid 
(but not necessarily connected) Hugenholtz diagrams. 

Let us consider now the combined operations 

h, = c(i,j)LfOhl, where i=(n+l,n+l),j~L 

h, = c(k 1) 4&ACf@~l, 

(4) 

where 

i=(n+l, n+l), k=(n+l, n+l),j,lEL. (5) 

According to our previous considerations we can trivially state 

THEOREM 1. (a) h, is a valid (n + 1)th order Hugenholtz graph containing one 
bubble on the vertex (n + 1); 

(b) h, is a valid (n + 1)th order Hugenholtz graph with a usual two-electron 
vertex (n + 1). 

Since operations (4) and (5) join the disconnected first-order component f to the 
original graph h, the following holds. 

THEOREM 2. If the graph h is connected both the resulting h, and h, are 
connected, too. 

Proof Let us consider first the graph h,. All paths in h remain unaffected, 
except those, which connect the vertices a and b through the line j= (x, y): 
a.. .x, y . 6. In the new graph hl this path disappears, however, the new path 
a . . .x, (n + l), y . . . b connects a and b again. Thus each connection between two 
arbitrary vertices of h is still kept. On the other hand, the new vertex (n + 1) is 
joined to every other vertex in h, since for an arbitrary vertex a in h there must exist 
a path a.. . x and in the new graph h, the path a.. .x (n + 1) joins a with (n + 1). In 
the case of h2 this proof must be repeated twice. 
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From the point of view of our generation procedure the most important result is 
that all (n + 1)th order connected Hugenholtz diagrams can be generated from nth 
order connected ones using procedures (4) and (5). 

THEOREM 3. For each (n + 1 )th order connected Hugenholtz graph h’” + ‘) there 
exists at least one nth order connected graph h that h(“+ ‘) = h, or h(“+ “= h2 defined 
in (4) and (5), respectively. 

Proof: Let us start with the easier case when the vertex (n + 1) of h’“+ ‘) 
contains a bubble. Clearly, in this case the procedure (4) is applicable. Now, the 
lines (n + 1, x) and (y, n + 1) join the vertex (n + 1) to the other parts of the 
diagram. Following now the opposite way used in procedure (4) let us separate the 
vertex (n + 1) and join the line (n + 1, x) with (y, n + 1) creating j= (x, y). The 
resulting nth order graph h is clearly a valid Hugenholtz diagram and all connec- 
tions of the type a.. x, (n + 1 ), y . . . b are still kept through the path a . . . x, y . . . b, 
i.e., h is connected. In other words operation (4) is invertible. When the point 
(n + 1) is a two-electron vertex the procedure (5) must be used. Unfortunately, 
separating the vertex (n + 1) now the two line pairs (u, n + 1 ), (n + 1, u), (x, n + 1 ), 
(n + 1, y) can be joined in two different ways: j= (u, u) and I= (x, y) or j = (u, y) 
and I = (x, u). Therefore, there is no unique inverse for operation (5) and h’“+ ‘) can 
be generated from two different nth order valid Hugenholtz graphs h’ and h”. We 
shall show now that at least one of them is connected. It is easy to understand that 
if h’ containing the lines (u, u) and (x, y) is disconnected it may not consist of more 
than two disconnected components, since h”‘+ ‘) is connected and procedure (5) can 
join at most two components. It is also clear that the lines j = (u, u) and I = (x, y) 
must be in different disconnected parts, otherwise operation (5) would again result 
in a disconnected (n + 1 )th order Hugenholtz graph. From this it follows that for an 
arbitrary vertex a a path a.. . u must exist in the first connected component and for 
an arbitrary vertex b in the second component a path y.. b, must exist, respec- 
tively. Consequently, in the graph h” containing the lines j = (a, y), I = (x, u) the 
points a and b are joined through the path a.. . u, y . . . b and thus h” is connected. 

We are now in the position to define a recursive algorithm for the generation of 
all valid and connected (n + 1)th order Hugenholtz diagrams: knowing the set of all 
connected, topologically distinct nth order Hugenholtz diagrams let us apply 
operations (4) and (5) to all members of the set running the lines j and 1 over the 
whole graph including those ones, too, which form a bubble or start or end on 
virtual vertices. 

According to Theorem 3 we can create in this way all topologically distinct 
connected diagrams appearing in the (n + 1)th order. On the other hand, some 
diagrams can be generated more than one (if equivalent lines are cut in procedures 
(4) and (5) or the original nth order diagrams h’ and h” introduced in the proof of 
Theorem 3 are both connected). For this reason we need a procedure to select the 
equivalent Hugenholtz diagrams, but we shall see in Section 6 that, using an 
appropriate representation, this step becomes trivial. Finally, we wish to remark the 



10 CSEPES AND PIPEK 

following. An argument similar to the proof of Theorem 3 shows that in order to 
obtain (n + 1)th order diagrams without bubbles in the nth order all connected 
graphs containing bubbles are necessary, too. In a given order such linked diagrams 
which become disconnected by removing the virtual vertices are also necessary for 
the generation of some connected and linked graphs with free lines in the next 
order. These facts show that the class of diagrams considered by us is the minimum 
set for generating all linked Hugenholtz diagrams in an arbitrary order. 

The generation of Goldstone diagrams belonging to an exchange set is quite 
straightforward from a given Hugenholtz diagram. As we have mentioned earlier a 
two-electron Hugenholtz vertex appears twice, on the first and on the second 
position of the directed lines (u, u), respectively. Let us suffix an additional quantity 
to the vertices of such lines: 

(4 0) -+ (UT CJ 1% B), wherea,/?= or2 (6) 

describing the fact that the Goldstone line enters the c&h end of the two-electron 
vertex u and originates on the bth end of the vertex v. Since the Goldstone two- 
electron vertices can be freely rotated around the horizontal axis we can choose, 
without restricting generality, the suffix 1 to the first occurrence of u on the left- 
hand side and the suffix 2 for the second one. The two appearances of v on the 
right-hand side of the Goldstone line (6) (outgoing lines) must be labelled by the 
numbers 1 and 2 and by an exchange 2 and 1, respectively. These two possibilities 
for every two-electron vertex yield 2”- m Goldstone diagrams belonging to the given 
nth order exchange set (m is the number of one-electron vertices. If the Hugenholtz 
graph contains equivalent lines there appear topologically equivalent Goldstone 
diagrams in the exchange set. The recognition of these graphs is described in 
Section 6. 

5. COMPUTER REPRESENTATION OF HUGENHOLTZ AND 
GOLDSTONE DIAGRAMS 

As described in Section 4, an nth order Hugenholtz graph is represented by a set 
of ordered pairs 

((1, x1), (LYl), . ..Y tn3 xtr), (4 Yn)}; xi GYi (i = 1, . ..) n), 

where xi and yi correspond to Hugenholtz vertices. We shall identify a Hugenholtz 
diagram with a string of integers consisting of these xi and yi numbers. 
H=x,y, ... x,y, is called the Hugenholtz index. H can be interpreted as an integer 
number in a numeration system based on (n + 1) and in the computer realization 
this number is stored in one or more integer variables depending on the computer 
word length. The Hugenholtz graph shown in Fig. 2 has the index H = 331212. It 
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can be easily seen that this is an unambigous representation of the Hugenholtz 
diagram. The operations defined in Section 4 can be realized in a simple way: 

@f(L Xl), (l,.Yl), “.> (4 x,,), hyn)] 

=((l,x,),...,(n,y,),(~+l,n+1),(~+1,~+1)} (8) 

and 

OH=x,y, *..x,y,(n+ 1) (n-t 1). (9) 

The c(i,j) operation means the exchange of the second elements of the ith and jth 
ordered pairs, considering the requirements xi < yi and x, Q yj. As it was shown in 
Section 4, a Goldstone diagram is represented by a set of the (UM 1 up) quantities: 

(11 IXl~,), (12lY,P,L . . . . (nl IX,,~,)? WIYnS,), 

where CI,, /I, = 1, 2. (10) 

Thus we can simply represent a Goldstone diagram by two strings of integers. 
One of these quantities is the Hugenholtz index H= x, y, . ..x., y,, and the other 
will be called the Goldstone index G = CI, j?, ... an/In. An exchange of the outgoing 
lines on any vertex results in changing two quantities M or fl to (3 - E) or (3 - p), 
which makes the generation of the exchange sets very fast. The recognition 
procedure of the equivalent Goldstone graphs based on the loop structure will be 
discussed in the next section. 

6. RECOGNITION OF TOPOLOGICALLY EQUIVALENT DIAGRAMS 

The identification of equivalent Hugenholtz graphs originated from the 
generation procedure is very simple owing to the one-to-one correspondence 
between the graphs and the chosen representation. The equivalence of two 
Hugenholtz diagrams can be settled by a simple arithmetic comparison of their 
representing indices. 

In the case of equivalent Goldstone diagrams the situation is more complicated. 
Although our representation is very convenient for generation purposes, it does not 
realize a unique mapping of Goldstone diagrams. We shall show now how to create 
a simple number which is in a one-to-one correspondence with a given Goldstone 
diagram. 

We utilize the fact that these kinds of graphs can be unambigously represented by 
the set of their loops [8]. Using the Goldstone representation from Section 5 the 

directed lines are unambigously defined. Let us pass through the first loop in the 
graph starting at the largest Hugenholtz vertex number (03 or n). The path can be 
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easily followed in the reverse direction using the chosen Goldstone representation. 
Let us record the Hugenholtz vertices (i.e., dropping the a or /? suffixes) in their 
order of occurrence in the walk along the loop and remove all the traversed 
Goldstone line of the walk. 

Thus the first loop is represented by a string of integers Y, = a, b, . . . z1 which can 
be treated as an integer in a numeration system based on (n + 1). The second loop 
can be started at the next largest vertex where an unttouched line enters, con- 
structing r2 = a, b2 I I , z2, and so on. The next step is to sort the r,(i = 1 . . . I) strings 
according to their numerical value into an ascending order r’, r; .. r; where 
r; 3 r; 2 . . r;, 1 means here the number of loops in the Goldstone diagram. Adding 
the length tr, of the loop E’ to the string r; we can form the following block of 
integers: 

b=ln,r’,n,r;---n,r;. 

It is easy to see that from b we can reproduce the r: loops as it is usual in the file 
handling for variable length blocked records. The procedure given now maps a 
Goldstone graph unambigously to the block of integers b. All equivalent diagrams 
result in the same 6. On the other hand, b unambigously determines the loop 
structure which distinguishes non-equivalent diagrams. Now creating the integer 
strings b, and b, for two Goldstone graphs their equivalence can be checked easily 
by finding b, = b,. 

7. AUTOMATIC EVALUATION OF MBPT CORRECTIONS 

There is a one-to-one correspondence between a member of the many-body 
perturbation series and a given Goldstone diagram. We restrict ourselves to give an 
automatic evaluation procedure for the closed-shell ground-state energy diagram 
contributions only; the generalization for other graphs can be easily made. 

Each Goldstone diagram corresponds to a sum arising in the energy expansion. 
In the spin-free formalism the evaluation rules are as follows: 

(i) Every fermion line carries an index. 

(ii) One- and two particle vertices are to be substituted by off-diagonal 
Fock-matrix elements and two-electron integrals, respectively, as indicated in Fig. 1. 

(iii) Each diagram has a topological factor ( - 1 )‘+ * 2’w,. And 

(iv) two subsequent vertices determine an energy denominator where 1 is the 
number of the loops and h is the number of the hole lines, respectively. To define 
wy we have to note the following. If an nth order Hugenholtz graph contains m 
bubbles and p equivalent line pairs, there are 2rr--mpp non-equivalent Goldstone 
diagrams belonging to this exchange set. In this case for each distinct Goldstone 
diagrams wy equals 1. In the case of nth order Hugenholtz graphs without bubbles, 
which have the maximum number n equivalent line pairs only two non-equivalent 
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Goldstone diagrams belong to the exchange set and each of them carries the factor 
wy= 4 [S]. 

A diagram contribution can be determined in the following way. Composing the 
product of all the n matrix elements and dividing it by the product of n - 1 energy 
expressions, one must sum up all the indices and multiply the result with the 
topological factor in which 2’ expresses the result of the summation for the 
spin-variables [2]. 

An energy expression can be constructed by considering the fermion lines 
between two subsequent vertices in the diagram as follows 

D= E,,,+EhZ+ ... +&/,,,-&/,,-EP2- ... -Epk, 

where h, and pi denote the indices of the hole and particle lines, respectively. The 
first Goldstone diagram in Fig. 2 yields the contribution 

(-1) =+=x2= 1 (P1P2Ihlh*)(P3IP2)(hlh2lP*P3) 

D, x4 
3 

hfh2. 
PlPZP3 

where D, =E,,,+E,,-EP,-EPZ and D2 = &,,, + Ej,> -E,, - Ep3. 
In an nth order Goldstone diagram with labelled vertices the fermion lines are 

given by the set of (UOL 1 up) quantities, as described in the previous sections. (For the 
virtual and one-particle vertices the suffix always equals 1.) In the case of equivalent 
lines the Hugenholtz set contains two equal (u, v) pairs. The number of loops can 
be determined as shown in Section 5. The type of directed line can be easily deter- 
mined by the difference u - u. If ZJ - u > 0 the line is of a particle type and in the case 
u - u < 0 it means the whole line. In the Hugenholtz representation u = u means a 
bubble and this line is ignored during the evaluation of the related Goldstone 
diagram contributions. 

Knowing the Goldstone set of (UCI ) up) quantities a trivial labelling of the fermion 
lines can be made. Every matrix element can be symbolically represented by the 
label set of the incoming and outgoing lines. Owing to this, every energy expression 
can be constructed symbolically, too. Starting with the first vertex one can write 
D, = Ei,, + &h2 - Epr - Ep2> where hi and pi are the labels of the entering and leaving 
lines, respectively. In the next step D, = D, + (a;, + &i2 - cj, - ajZ) where i, and j, are 
the symbolic labels of the incoming and outgoing lines of the second vertex, respec- 
tively. Following this procedure each energy expression can be constructed. In the 
computer realization the actual machine addresses of the matrix elements and the E; 
quantities are evaluated on the basis of this symbolical representation. Generating 
the Goldstone set of (ucc 1 up) quantities the topological factor can be easily deter- 
mined. 

Of course, some simplifications can be made on the level of the Hugenholtz 
graphs, contracting the Hermitian conjugated diagrams as in Ref. [7] and creating 
optimization classes with the change of the fermion line labelling, but we do not 
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treat these questions here. A complete fifth-order calculation for the correlation 
energy based on this method will be published elsewhere [lo]. 

Our automatic evaluation method involves straightforward summation over all 
indices. Wigner’s (2n + 1) rule provides a more effective tool for determining the 
correlation energy up to and including the fourth-order of MBPT [S], but the 
exact formulae based on Wigner’s (2~ + 1) rule are not yet known for the complete 
higher order MBPT corrections. Considering this fact the automatic evaluation 
method presented here could be a reference for checking other sophisticated 
methods might be developed in the future; on the other hand, it is appropriate for 
the calculation of the complete fifth-order correlation energy correction of some 
simple systems [lo]. 

8. COMPUTATIONAL RESULTS 

Based on the general algorithm described in the previous sections, we have 
elaborated a new program for generating any kind of many-body diagrams 
contained in Table I. Theoretically the method can be applied up to an arbitrary 
order of MBPT; in practice, however, the time consumption and storage 
requirements increase extremely with the order of the perturbation theory. 

In quantum chemistry the BMPT is commonly used for the evaluation of the 
correlation energy. We present here the results of an illustrative calculation for 
those kind of many-body ground-state diagrams (see the first entry in Table I) 
which appear in this problem. There are two different types, the so-called canonical 
and localization diagrams, respectively [ 131. The canonical graphs do not contain 
any bubble at all; on the other hand, in the localization diagrams the one-particle 

TABLE II 

The Number of the Canonical Diagrams up to the 
Fifth Order of Perturbation Theory 

2 1 2 1 2 
3 3 12 3 12 

4 39 300 31 242 
5 840 13,680 462 1552 

0 The order of perturbation theory. 
“The number of Hugenholtz graphs before contracting the Hermitian 

conjugated pairs. 
( The number of Goldstone diagrams belonging to the NH exchange sets. 
d The number of Hugenholtz graphs after contracting the Hermitian 

conjugated pairs. 
e The number of Goldstone diagrams belonging to the Ncn exchange sets. 
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vertices (represented by bubbles) must have the same type of incoming and out- 
going fermion lines. As a simple consequence of this fact the localization diagrams 
may not contain bubbles on the end vertices. The program creates all the distinct 
graphs with bubbles and after a validity test only the localization diagrams are 
kept. 

On evaluating the correlation energy the Hermitian conjugated graphs give the 
same contribution, thus it is worth contracting them on the calculation level. On 
the other hand, if one wishes to analyze the CCT contributions, each diagram must 
be distinguished. At present, complete correlation energy calculations can be carried 
out only up to and including the fifth order of MBPT [lo]; the higher order 
calculations due to the calculational difficulties are completely out of question. 
Considering this fact, we present our results for diagram generation up to the fifth 
order of MBPT. Table II and Table III show the number of canonical and 
localization Hugenholtz (NH) and Goldstone (No) diagrams. We have also 
contracted the Hermitian conjugated Hugenholtz (NCH) diagrams. No, stands for 
the number of the Goldstone diagrams in the exchange sets belonging to the 
contracted Hugenholtz graphs. 

Since the order of the contribution of a given localization graph depends on the 
number of one- and two-particle vertices [ 11 J; it is worth separating the diagrams 
according to their bubble-number. Table IV shows the number of the localization 
Hugenholtz and Goldstone diagrams before and after contracting the Hermitian 
conjugated Hugenholtz graphs. 

TABLE III 

The Number of the Localization Diagrams up to the 
Fifth Order of Perturbation Theory 

3 2 4 2 4 
4 22 96 13 52 
5 522 4464 300 2532 

‘The order of perturbation theory. 
hThe number of Hugenholtz graphs before contracting the Hermitian 

conjugated pairs. 
C The number of Goldstone diagrams belonging to the N, exchange sets. 
“The number of Hugenholtz graphs after contracting the Hermitian 

conjugated pairs. 
” The number of Goldstone diagrams belonging to the NC, exchange sets. 

581:77/l-2 
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TABLE IV 

The Number of the Localization Diagrams up to the Fifth Order of 
Perturbation Theory after Separation by the Number of Bubbles 

no Nk Ni NC? N&I N&O 

3 1 2 4 2 4 

4 1 16 80 8 40 
2 6 16 5 12 

5 1 420 3920 240 2224 
2 82 480 46 264 
3 20 64 14 44 

y  The order of perturbation theory. 
‘The number of bubbles in the Hugenholtz graphs. 
c The number of Hugenholtz graphs before contracting the Hermitian conjugated pairs. 
“The number of Goldstone diagrams belonging to the N, exchange sets. 
’ The number of Hugenholtz graphs after contracting the Hermitian conjugated pairs. 
‘The number of Goldstone diagrams belonging to the Ncn excange sets. 
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